Los radiofaros Consol (Elektra-Sonne) – (11.1) El sistema radiante. Nociones básicas

 

Dedicaré un pequeño conjunto de subsecciones dentro del tema de los radiofaros Consol para introducir algunos conceptos básicos dentro del electromagnetismo, que después usaré cuando hable de las antenas del mencionado sistema de posicionamiento. Ésta no es sino la introducción dentro de este grupo de subsecciones.

Existen muchos tipos diferentes de antenas, pero básicamente se pueden reducir a dos tipos, en concreto, antenas lineales, y antenas de apertura. Y digo sólo estos dos tipos, porque en general existen muchas antenas, como por ejemplo los mástiles radiantes de la estación Consol, que pueden ser puestos en equivalencia con antenas lineales, dado que están constituidas por tramos de acero, y la dimensión física de su grosor es mucho menor que la longitud de onda, y no ocasiona una pérdida de generalidad el considerar como antenas lineales otros tipos de radiadores de mayor longitud, siempre que estén confeccionados con elementos lineales, o inclusive agrupamientos o arrays formados por conjuntos de antenas en interacción, del que es un ejemplo la tan conocida y clásica antena Uda-Yagi, usada en recepción de televisión. De este modo, no sólo son antenas lineales los clásicos dipolos, monopolos, y monopolos sobre masa –caso éste último al que pertenecen los mástiles radiantes Consol-, sino que también son antenas lineales las espiras usadas en los radiogoniómetros, las antenas rómbicas y espirales –adaptadas éstas últimas especialmente a las polarizaciones elípticas-, las espirales cónicas, los dipolos doblados, los solenoides cargados con ferrita, usados desde los comienzos de la transmisión en onda media en receptores de radiodifusión, e incluso se pueden catalogar como antenas lineales algunas de las empleadas en banda ancha, que utilizan por ejemplo una distribución logarítmica en la distancia entre elementos, antenas multibanda con distintas longitudes de los elementos y también con distancias específicas entre ellos, antenas logoperiódicas trapezoidales, usadas como alimentadores (feeders) de antenas parabólicas grandes, y un largo etcétera, en el que podemos incluir como caso llamativo las antenas con geometría fractal, como el monopolo de Sierpinski –también pensado para banda ancha-. De este modo una antena lineal es un radiador que se puede aproximar por un conjunto de líneas construidas de un material buen conductor de la corriente eléctrica, en un punto de las cuales se suministra la corriente impresa o de excitación, y que presentan una determinada geometría que condiciona ya de por sí todas sus características de transmisión-recepción.

Por otra parte, se denominan antenas de apertura a aquellos radiadores en los cuales el campo electromagnético radiado se puede calcular como una integral extendida a una cierta superficie y obtenida en base a la distribución de campo eléctrico de excitación en dicha superficie. Casos de éstas antenas son las conocidas parabólicas, tanto si las alimentamos desde el foco de la parábola; como también en la variedad Cassegrain, en la que se usa un subreflector montado en el foco de la parábola, estando el feeder en el centro de la misma y orientado al subreflector. Otros casos de antenas de apertura son las antenas de lente, o las llamadas bocinas, que no son más que precisamente aberturas con forma de embudo que dan solución de continuidad al campo eléctrico que viaja por la guía de onda y que sale por ellas al aire. Y también se usan antenas de tipo micro-strip para frecuencias de microondas.

Es decir, existe una gran variedad de antenas, cada caso particular se emplea para ciertas utilidades concretas. En otras subsecciones explicaré lo que es el diagrama de radiación, la ganancia y directividad de una antena, el ancho de banda de la misma, el ancho de haz, la resistencia de radiación, la impedancia de entrada, y la polarización. Ante un determinado caso de diseño, se trata de determinar la geometría y dimensiones de la antena para que sus parámetros característicos se aproximen a los que se necesitan para la correspondiente situación particular de transmisión-recepción.

En cálculo de antenas, a partir de las ecuaciones de Maxwell, se puede definir una magnitud de la que deriva el campo magnético radiado, que es el potencial vector. Aplicando ciertas buenas aproximaciones se obtiene, por un lado, que el fasor de campo magnético se puede poner como el rotacional del potencial vector, mientras que el fasor del campo eléctrico, en una radiación monocromática (si se excita una única frecuencia o tono de portadora) se obtiene como la pulsación multiplicada por el potencial vector y con un factor que incluye la unidad imaginaria cambiada de signo. Esto es, si somos capaces de obtener una expresión para el potencial vector A en una cierta posición alejada de la antena, seremos capaces de conocer los fasores de campo magnético y eléctrico de la onda en ese lugar.

¿Qué es un fasor?. Un fasor es un vector complejo de una o más dimensiones, tal que multiplicándolo por una exponencial compleja de pulsación w y obteniendo la parte real de dicho producto, se consigue la función temporal o señal de una cierta magnitud eléctrica, que podría ser por ejemplo una señal de corriente, un voltaje o señal de tensión, o también la expresión instantánea del campo eléctrico o del campo magnético. Es decir, podemos pensar en un fasor para cada señal que estudiemos, el campo eléctrico instantáneo llevará un fasor asociado, el campo magnético tendrá asociado otro fasor, la corriente por ejemplo de un circuito también se puede escribir en forma fasorial, etcétera… Pero los fasores tienen la limitación de que sólo se pueden emplear para pulsaciones monocromáticas, esto es, sólo podríamos usar los fasores cuando trabajamos con una única frecuencia, que sería la portadora. El caso general de una transmisión pasobanda, más aproximada a la realidad, y que es el caso más genérico posible, precisa del empleo de otro concepto matemático más sofisticado como es la envolvente compleja, que no es otra cosa que una función compleja temporal formada por un módulo dependiente del tiempo multiplicando a un factor de fase también dependiente del tiempo. Si multiplicamos esta envolvente compleja por una exponencial compleja de pulsación w (correspondiente a la frecuencia de portadora de w/(2*pi) ), y tomamos la parte real, estaremos en realidad obteniendo la variación temporal instantánea de una determinada magnitud bajo estudio, que al igual que en el caso del uso de fasores puede ser un campo, una corriente, o una tensión, pero que en este caso particular presenta la propiedad de no ser una frecuencia pura, sino el conjunto de muchas frecuencias puras actuando a la vez, y ocupando un cierto ancho de banda. Multiplicar un fasor o una envolvente compleja por una exponencial compleja de una cierta pulsación equivale a girarlo en el plano complejo con una velocidad de giro o rotación igual a la pulsación, medida en radianes por segundo.

En general, y como remate de este primer acercamiento a las antenas y al electromagnetismo, el potencial vector que necesitamos para conocer cómo funciona una antena se halla según una expresión como la que sigue:

 

 

 

En esta expresión el vector A es el potencial vector, el valor nu es la permeabilidad magnética, el vector J es la distribución sobre la superficie de la antena del fasor de la densidad de corriente, k es la constante de propagación, y R es la distancia entre el punto concreto de la antena cuyo aporte estamos considerando y el lugar donde se quiere calcular el potencial vector. El valor dv’ es el elemento diferencial de volumen por el que fluye la densidad de corriente y V’ es todo el volumen por el que circula la corriente en la antena. Así pues, esta ecuación lo que viene a expresar, es que el potencial vector es una combinación lineal formada con coeficientes complejos que multiplican a los vectores densidad de corriente de cada posición de la antena, que equivale a la suma de los elementos de potencial vector, y que se hallan por un escalado complejo del producto de la densidad de corriente impresa y el inverso de la distancia. La exponencial compleja que forma parte de los coeficientes de escalado es un término de fase que expresa la tardanza en producirse los efectos (campos electromagnéticos) en el punto de cálculo, posteriormente en el tiempo a las causas, que fueron las corrientes impresas de la antena, y que tardaron un cierto tiempo en propagarse.

En la siguiente subsección de este hilo trataré el caso particular de la radiación del dipolo elemental y de otros tipos de dipolos más largos.

 

Anuncios
  1. No trackbacks yet.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: