Archive for the ‘ Telecomunicaciones ’ Category

Los radiofaros Consol (Elektra-Sonne) – (16) Tablas y gráficas de interés, II.-

 

Añado en esta entrada otras gráficas de interés relativas al sistema de posicionamiento Consol. La primera de ellas representa la evolución temporal de los fasores en un ciclo completo del período de la parte de señal de orientación, para la señal recibida en la perpendicular a la línea de antenas.

 

unciclo

 

La segunda de la serie representa la señal demodulada relativa al subperiodo de señal de orientación.

 

demodulada

 

Las dos siguientes imágenes representan la señal demodulada para distintas ubicaciones en relación a la estación. En la primera imagen se aprecia únicamente la parte de orientación de la señal para dos posiciones angulares diferentes respecto a la estación. La segunda de ellas representa el ciclo completo de la señal demodulada para la transmisión efectuada desde la estación de Stavanger.

 

recibidas1

 

stavanger

 

Anuncios

Los radiofaros Consol (Elektra-Sonne) – (15) Tablas y gráficas de interés.-

 

En este apartado añadiré imágenes relativas al funcionamiento del sistema Consol, extraidas del libro Funksystem für Ortung und Navigation, cuyo autor es Ernst Kramar.

En la primera imagen se aprecia la apariencia técnica general del sistema, con su distribución de antenas, y el mecanismo desfasador.

 

 

En la imagen que sigue se pueden ver dos cronogramas típicos de lo que podría ser un período de la señal recibida, incluyendo la emisión de baliza NDB y el subperíodo de señal de orientación.

 

 

La figura que sigue es otra representación de la parte de señal del subperíodo de orientación.

 

 

A continuación se muestra un esquema en el que se explica la composición del fasor de la señal recibida, en función de los fasores de las dos señales extremas y del de la señal central.

 

 

Para ya finalizar, en las dos tablas que siguen se tabulan los parámetros relativos a las estaciones Consol activas después de la confrontación bélica.

 

 

 

Una chica La Mar de lista y La Mar de guapa

 


No sólo fue un icono del cine mudo y los principios del sonoro. Era de una belleza inusual, a base de sofisticación y rasgos delineados y perfectos, tirando casi hacia lo oriental, como una princesa de un cuento de Scherezzade. Pero Hedy Lamarr era mucho más que una cara bonita con excelentes dotes interpretativas. Era una máquina de la ingeniería, que tuvo una feliz idea, y que supo hacerla realidad, aunque nunca pudiera explotarla.



El 11 de agosto de 1942, en plena Segunda Guerra Mundial, en colaboración con el pianista George Antheil, patentó la primera implementación conocida de las técnicas de espectro ensanchado. En aquella guerra se hicieron notorias las dificultades existentes en algunos sistemas de telecomunicaciones o de rádar ante el uso de medidas electrónicas, conocidas también con el nombre de “jamming” en el argot técnico. Las señales de jamming no son sino interferencias creadas adrede por el enemigo para inutilizar por ejemplo los sistemas de rádar, introduciéndose información indeseada y falsa modulando las frecuencias empleadas en el sistema receptor en sí, que se cuela en las antenas, y puede confundir (por ejemplo en el caso del rádar) la interpretación de los blancos o targets e incluso inutilizar completamente la recepción.



En realidad la técnica básica para conseguir que una determinada información viaje por el espacio consiste en mezclar la señal de información, que podría por ejemplo ser la onda de corriente de baja frecuencia que genera un micrófono capacitivo, con una señal sinusoidal de alta frecuencia, amplificar el resultado y radiarlo en una antena. La mezcla de estas dos señales se puede conseguir aprovechando la no-linealidad de algún dispositivo, como es el caso de un transistor bipolar polarizado a caballo de la zona activa y la de saturación, o de un transistor de efecto de campo, de modo que en el colector o respectivamente drenador tenemos un espectro que incluye no sólo la onda tal cual amplificada, sino además la suma de todos los armónicos que resultan de elevar a las sucesivas potencias un coseno que varía en el tiempo, el que suministraría el oscilador local, junto con los productos de intermodulación que surgen al sumar en el circuito de entrada del mezclador este coseno con la señal de corriente de la información y elevar a cada potencia. Refiriéndome aquí a las potencias implícitas en el desarrollo en serie de Taylor de la señal, válido en este contexto porque se opera siempre con márgenes dinámicos de pequeña señal, dado que las mayores amplitudes se suelen conseguir al final de la cadena de transmisión, cuando se realiza la amplificación de potencia. Ésto es así, porque el producto de dos señales de dos frecuencias distintas es igual a la semisuma de una señal de frecuencia suma y otra señal de frecuencia diferencia. De esta forma, en recepción se usa uno de los productos de intermodulación de segundo orden, más concretamente aquél que vibra a la diferencia entre la frecuencia de radio y la frecuencia del oscilador local de dicho receptor, para pasar la información a una determinada frecuencia mucho más baja que la radiofrecuencia, de modo que pueda ser amplificada con calidad y poco ruido y pasada al detector del receptor. Así, la forma más barata para transmitir información en términos de ancho de banda empleado es cualquiera modulación que transmita la señal moduladora que contiene la información por el canal, sin modificaciones, y hablando por supuesto de sistemas analógicos, empleando como límite el ancho de banda positivo de dicha señal.



¿Entonces cuál fue la idea de Hedy? A Hedy Lamarr se le ocurrió variar de alguna forma sincrónica en el transmisor y el receptor la frecuencia de portadora o señal de radiofrecuencia empleada en la transmisión. Más específicamente, Hedy empleó en su sistema lo que hoy se conoce como espectro ensanchado por salto de frecuencia (“Frequency hoping”). Por aquel entonces no existían los avances que tenemos hoy en día en electrónica de estado sólido (aún se desconocía esta tecnología), por lo que usó como mecanismo de sincronía entre el transmisor y el receptor el bombo de un organillo, que a medida que iba girando iba generando señales de distintas frecuencias para mezclar con la información, ocupando un ancho de banda muchísimo mayor que el estrictamente necesario, de manera que la información quedase enmascarada por el ruido. Cuanto mayor es el ancho de banda, cualquier sistema de transmisión limita la densidad espectral de potencia radiada por elemento de frecuencia. Es decir, cuanto mayor sea el ancho de banda que empleamos en una transmisión, más se limita el nivel de la señal que transmitimos. Asimismo, cuanto mayor sea el ancho de banda en recepción, menos afectarán las interferencias en cualquiera de las frecuencias de la banda, con lo que las señales de jamming se verán muy atenuadas, y sus efectos sobre la señal recibida serán prácticamente inapreciables. En consecuencia, un receptor normal pensado para cualquiera de las frecuencias que empleamos en nuestro transmisor “Hedy” sólo detectaría ruido, y para lograr que un sistema se enganchase a la transmisión que estamos efectuando con salto de frecuencia, debería emplearse cualquier sistema que permitiese variar la frecuencia de sintonía y la frecuencia del oscilador del mezclador receptor en el mismo orden y de forma sincrónica con sus variaciones en transmisión, para lo cual también sería preciso que nuestro sistema de antena estuviese diseñado para banda ancha. Sólo un conocimiento exacto del mecanismo empleado para el salto de frecuencia en transmisión permitiría la recepción correcta de la señal. En cualquier otro caso, la señal recibida sería sólo ruido. Actualmente, la tecnología permite afortunadamente sistemas más prácticos que “el organillo”. Digamos que “el organillo” está hoy en día implementado mediante circuitería a muy alta escala de integración.



Fue en el año 1957 cuando los ingenieros de la empresa Silvania Electronics Systems Division implementaron por primera vez el sistema ideado por Lamarr mediante transistores. Y en la actualidad las técnicas de espectro ensanchado son cada vez más importantes. No sólo se sigue empleando el sistema de salto de frecuencia, sino que también existe otra variedad denominada “de secuencia directa”, que sintetiza el filtro transmisor mediante un código sólo conocido por transmisor y receptor, y que también desparrama el espectro haciendo la señal indistinguible de ruido en receptores de banda estrecha. El creciente interés en estas tecnologías deriva de que usar espectro ensanchado permite superponer en una misma banda de frecuencia señales de muchas fuentes sin que existan interferencias limitantes entre ellas.

Y todo ello gracias a la Lamarr. La Mar de lista y La Mar de guapa la tía. Pero cuya patente expiró 3 años antes de que se empezasen a sacar los primeros sistemas de espectro ensanchado basados en sus ideas. Por lo tanto, nunca ganó ningún dinero con ésto.

Los radiofaros Consol (Elektra-Sonne) – (14.1.1) Puntualizaciones respecto a los datos históricos. La captura del U-505.-

 

La afirmación de que el sistema Elektra-Sonne fue utilizado por ambos bandos es correcta. La Inteligencia británica sabía que las estaciones existían ya durante la guerra. Para ello contamos con el testimonio del Profesor R. V. Jones, que fue Profesor Emérito de Filosofía Natural en la Universidad de Aberdeen y un fellow honorario de los Colegios de Wadham y Balliol, en Oxford. Como Director de Inteligencia en el Staff Aéreo en 1946 y posteriormente Director de Inteligencia Científica en el Ministerio de Defensa, trabajó en un rol de consejero desde la Segunda Guerra Mundial. Sus publicaciones incluyen Most Secret War (1978), Future Conflict and New Technology (1981), Some thoughts on Star Wars (1981), e Instruments and Experiences (1988), así como informes detallados de lo que realmente conocían los británicos en tiempos de guerra de Elektra-Sonne y otros sistemas de guiado para las bombas volantes V-1.

En el libro Hitler’s U-Boat War, the hunted 1942-1946, se hace alusión a dicha persona (R.V. Jones), concretamente en las páginas 554, 555 y 556 (no aparece en las tres, pero cito estos tres números para entrar en contexto al dato). Las filtraciones a los británicos poseían toda la credibilidad, puesto que acaecieron tras la captura del submarino nazi U-505 por parte del bando aliado.

Transcribo aquí la traducción del inglés del texto que yace en las páginas mencionadas:

“El más triste U-boat de la fuerza Atlántica, el IXC U-505, que había abortado al menos una docena de partidas desde diciembre de 1942, una de ellas ocasionada por el suicidio del patrón, Peter Zschech, finalmente navegó de nuevo el 16 de marzo. Estaba todavía comandado por el reemplazo de Zschech, Harald Lange, de 40 años, el más viejo capitán en servicio activo de los U-boat de ataque. Su primer oficial siguió siendo Paul Meyer, de edad 26 años, que había llevado el submarino a casa cuando Zschech se mató.

Después de que dio las nuevas claves Enigma al U-123, Lange en el U-505 patrulló sobre seis semanas entre Freetown y su puerto vecino, Monrovia (Liberia). Los Aliados hicieron un seguimiento de sus movimientos. En todo aquel tiempo permaneció sin sumergirse. Las prolongadas operaciones aguantando el calor y la humedad del trópico debilitaron la tripulación y saquearon las baterías. Bajo de combustible, Lange comenzó el viaje de retorno el día 27 de mayo, eligiendo hacer una parada en las islas Cabo Verde.

Los descifradores de códigos Aliados se prepararon para el seguimiento del viaje de regreso del U-505. El grupo de “asesinos de cazadores” de Dan Gallery (el porta-jeeps Guadalcanal y una escolta de cinco destructores), trataron de localizar el U-505, pero no lo lograron. Bajo de fuel, el 4 de junio Gallery dio órdenes de dirigirse a Casablanca.

Uno de los bien entrenados destructores de la escolta, Chatelain, reportó un posible contacto de sónar a las 11:10 aquella misma mañana. Su nuevo capitán, Dudley S. Knox, un jurista e hijo del prominente historiador naval Dudley Wright Knox, movió abajo el visor, y evaluó el contacto como un ‘submarino’, disparando una salva. Gallery dirigió prontamente dos Wildcats aerotransportables y dos destructores, el Jenks y el Pillsbury, para asistir al Chatelain y sacar el Guadalcanal del alcance de los torpedos, cubiertos por los otros dos destructores, Pope y Flaherty. Entonces, lanzó un ‘equipo asesino’ Wildcat-Avenger  (gato salvaje vengador).

Los dos Wildcats aerotransportables, pilotados por John W. Cadle, Jr. y Wolffe W. Roberts, cubrieron al destructor Chatelain. Cuando los pilotos vieron el contorno del submarino a la profundidad del periscopio, Cadle radió: ‘el buque ha justo hecho fuego en la dirección opuesta de la salva’. Entonces Cadle marcó el punto dos veces con ráfagas de ametralladora. Gallery más tarde escribiría que la ‘inteligente’, ‘rápida’ y ‘valiente’ acción de Cadle y Roberts fue decisiva para los eventos que siguieron, y fue ‘uno de los pocos casos en los que una aeronave dirigió el ataque’ contra un U-boat. Más tarde, el patrón Dudle Knox a bordo del Chatelain denegó enfáticamente que fuera éste el caso. Escribió que después de su ataque fallido, volvió a obtener el contacto por sónar del U-505 a 100 yardas y que nunca lo perdió. Las observaciones y objetivo marcados por los Wildcats, según insistió Knox, fueron ‘valiosos’ pero sólo en que le permitieron cortar el procedimiento estándar y comenzar un ataque con cargas de profundidad en un rango de quinientas yardas, en vez de las prescritas cien yardas.

Knox movió abajo el haz del sónar y a las 11:21 comenzó a lanzar un conjunto de catorce cargas de profundidad. Al mismo tiempo Lange había descubierto que el U-505 estaba en gran peligro y había ordenado a su ingeniero, Joseph Hanser, coger el bote de profundidad. Las cargas de profundidad alcanzaron el U-505 y causaron una inundación, pero no dañaron severamente la estructura del bote. Sin embargo, lo pusieron fuera de control hasta aproximadamente los 755 pies, de acuerdo a las cuentas del tripulante Decker, que fue a decir que Lange entonces lloró ‘su última orden organizada’ a Hanser: ‘Súbenos, súbenos antes de que sea demasiado tarde’.

Aproximadamente veinte minutos más tarde que el contacto original por sónar, a las 11:22, el U-505 puso la popa hacia la superficie alrededor de cien yardas del Chatelain. Dudley Knox, que estuvo durante la alerta completa, paró e inmediatamente abrió fuego con sus cañones de calibre 3”/50, disparando cuarenta y ocho veces, algunos disparos alcanzaron el U-505. Cuando apareció aquello, el U-505 estaba virando hacia él -y bastó un vistazo para ver que un torpedo estaba viniendo hacia el Chatelain- Knox respondió disparando un único torpedo al U-505, pero falló, lo mismo que ocurrió para el torpedo alemán. Uniéndose al ataque, el Jenks, comandado por Julius F. Way, disparó treinta y dos veces con el calibre 3”/50 y el Pillsbury, comandado por George W. Casselman, disparó veintiuna veces. Al mismo tiempo, los dos Wildcats entraron en la refriega, reportándolo los pilotos (quizás imprecisamente). Todos estos disparos mataron uno de los cincuenta y nueve alemanes del U-505 e hirieron a otros, incluyendo el patrón Lange y el primer oficial Meyer. ….(continuará en la próxima entrada del hilo)….

Los radiofaros Consol (Elektra-Sonne) – (13) La ampliación del sistema Consol con el paso del tiempo.-

 

Habiendo pasado ya bastante tiempo de mi publicación inicial de la información histórica que obraba en mi poder, tengo algunas revisiones importantes que acometer al respecto de dichos datos, a la luz de nueva documentación al respecto que he ido recabando. Seguiré el mismo orden que empleé originalmente y adjuntaré las evidencias de mis afirmaciones una a una.

En el punto 3 se explicitaba que la estación de Bush Mills (Irlanda), se había construido después de la Segunda Guerra Mundial. Pero quedó (mal) redactado (a pesar de que yo ya sabía cómo debía quedar), y se podría interpretar como si no hubiese más estaciones que la ahora mencionada y las originales usadas en la guerra. Esa interpretación sería totalmente errónea. Aunque en este preciso instante no aportaré la lista de estaciones con sus respectivas frecuencias, cosa que dejaré para otra entrada, sí puedo adelantar que después de la confrontación bélica se fue completando la cobertura del sistema Consol. En particular, en el Atlántico más septentrional se construyeron estaciones en las islas de Jan Majen y Bjornoya, así como en la costa de Noruega, en la localidad de Andoya. Para probar esta afirmación, incluyo a continuación un mapa con el enclavamiento geográfico de estas tres estaciones, extraido del libro Funk-system für Ortung und Navigation, de Ernst Kramar.

 

ConsolNortep

Los radiofaros Consol (Elektra-Sonne) – (12) .- Aspectos técnicos básicos del aparato Elektra.-

 

Si el sistema Elektra-Sonne tenía un cerebro, aunque rudimentario en relación a las tecnologías actuales, ese cerebro, de cuyo funcionamiento dependía la distribución de desfasajes de las antenas extremas, no era otro que el aparato Elektra.

El aparato Elektra se encargaba de implementar los dos regímenes de desfase P y D comentados en la sección 9, donde se habló del transmisor y de su funcionamiento a grandes rasgos. En la siguiente figura se puede contemplar un diagrama simplificado de dicho aparato, extraido del libro Funk-systeme für Ortung und Navigation, escrito por el propio Ernst Kramar y publicado en el año 1973.

 

 

En la imagen se aprecia un circulito central que simboliza el transmisor, que en la estación de Arneiro generaba una señal sinusoidal de 285 KiloHerzios. Como se puede ver, esta señal es llevada tal cual a la antena B (de las tres antenas, la que ocupaba la posición central), sin aplicarle ningún desfase en dicha máquina, aunque como es lógico la señal sí llegaría con un cierto retardo a la antena, pues el edificio de los transmisores se hallaba a unos 150-200 metros de la antena central. Este transmisor es lo que aparece en el diagrama reseñado como “Sender”. A continuación, si seguimos el cableado de izquierda a derecha desde el oscilador, podemos contemplar un doble conmutador que era accionado de forma automática y mecánica, y que era el responsable del desfasaje P, con distintas polaridades en alternancia. En la posición en que se halla el conmutador en el esquema dejaba pasar la señal tal cual a los terminales de salida, esto es, ausencia de desfase para las dos antenas, que equivale a la posición de +1 en el diagrama de desfasaje P de la sección 9 dedicada al transmisor –si nos abstraemos del funcionamiento del círculo mayor o red con goniómetro, que se encarga del desfasaje D y que explicaré más tarde-. Pero si nos fijamos bien en el dibujo, podemos advertir que cuando dicho doble conmutador se halla en la otra posición, bajando hacia abajo, cambia la polaridad de la señal que sale de sus terminales, lo cual es equivalente a introducir un desfase de 180 grados entre los dos terminales de salida, que es lo mismo que introducir señales entre vivo y tierra con signo cambiado en ambas antenas. Con esta simple conmutación se consigue el régimen brusco P de alternancia, responsable de los puntos y rayas de la señal de orientación.

Pero ésto no es todo. Los terminales a la salida del doble conmutador entregan la tensión a una red con goniómetro, que en el esquema lleva el nombre de Goniometer Mit Netzwerk, y que se representa en el esquema con un doble círculo, uno para el vivo y otro para la tierra. Por ser este dispositivo a todos los efectos una línea de transmisión, introducirá desfase entre las señales de las antenas extremas dependiente de la posición del cursor que lo va recorriendo. Los cursores, que eran movidos por un motor, van recorriendo los dos círculos (trozos de líneas de transmisión especiales cuyo único objeto es desfasar). A medida que los cursores van avanzando desde su posición más a la derecha van añadiendo en una de las antenas un desfase creciente y a la otra antena el desfase exactamente suplementario, teniendo en cuenta que el tramo de línea que aparece dibujado con trazo sólido se corresponde con un desfase total de 180 grados. En otras palabras, gracias a esta red con goniómetro se consigue que el desfase aplicado a una de las antenas extremas vaya aumentando al mismo tiempo que el de la otra va disminuyendo; y al estar la red circular combinada con el efecto del conmutador, el funcionamiento representa la apariencia de que la fase de una antena extrema va aumentando con respecto a la central con saltos bruscos de 180º (cuando P representa una raya al estar la polaridad invertida), y la de la otra antena extrema, en esta misma situación de conmutador a -1, tiene su fasor con ángulo simétrico al de la anterior respecto al eje imaginario, estando ambos fasores por debajo del eje real, mientras que cuando sale un punto (conmutador a +1, o ausencia de cambio de polaridad), ambas antenas extremas se hallan con desfases suplementarios, por encima de la recta real, teniendo el fasor complejo de la central un valor igual a un número real correspondiente a la corriente de dicho mástil. Es fácil ver que el comportamiento íntegro de esta red desfasadora tiene casi simetría especular temporal de la señal total generada con respecto al punto medio marcado por el goniómetro, que es el punto correspondiente a la emisión de la equiseñal para la dirección perpendicular a la línea de antenas, pues en esa dirección las ondas radiadas no añaden desfase alguno entre ellas (viajan enfasadas), al margen de los desfases que les proporciona la máquina. Y digo “casi” simetría especular, porque en el trayecto que va desde el punto medio al extremo izquierdo de la red, el comportamiento de los puntos es el mismo que el de las rayas en la parte entre el punto medio y el extremo derecho, es decir, se cambian los papeles mutuamente. Esto se podrá ver mejor en la sección que un día dedicaré a las señales recibidas, y se razona fácilmente pensando en el movimiento de los fasores giratorios, de cuyas partes reales (proyecciones sobre la recta real) se obtienen los niveles de señal correspondientes a puntos y rayas en todo el período. Como es lógico, para cada dirección radial relativa a la línea de antenas, la equiseñal se corresponderá a otro punto de la red distinto del central, dado que no sólo hay que tener en cuenta para la señal recibida los desfases que crea la máquina, sino los debidos a la propagación de las tres ondas.

Cuando los dos cursores llegan al punto más a a la izquierda de su recorrido, termina la parte de señal de orientación Consol, y el resto de recorrido, que aparece en línea discontinua, hasta empezar un nuevo ciclo con los cursores a la derecha, los cursores siguen girando, pero con la red en OFF. Se dedicaba este tiempo en cada estación Consol como mínimo para enviar desde únicamente la antena central la señal identificadora propia en código Morse, mezclada con un fragmento de portadora, para la operación de escucha de baliza NDB necesaria para discriminar con el radiogoniómetro en alta mar una aproximación a la línea de demora.

Todo lo descrito en esta sección contempla la suposición ideal de que no hubiera desfases debidos al viaje de las ondas entre la estación de control y las antenas extremas. En realidad dichos desfases sí que existían, y por lo tanto, tal y como mencioné en el anterior apartado, debía hacerse una corrección usando otros dispositivos dentro de la máquina Elektra -aparte de los incluidos en el diagrama simplificado de éste-. Todo esto de acuerdo con las recepciones en el punto de monitorización de la señal compuesta por las tres ondas, para lograr que el radiofaro funcionase correctamente en su intervalo temporal de generación de señal de orientación. Tales dispositivos consistían en cadenas de desfase correctoras.

 

Los radiofaros Consol (Elektra-Sonne) – (11.3) El sistema radiante. El monopolo sobre masa y cómo se implementó en la estación Elektra-Sonne.-

 

 

En los anteriores subapartados de esta misma sección, dentro del análisis del sistema de posicionamiento Consol, se han considerado las antenas dipolo de manera aislada. En la práctica, si existen obstáculos cerca de una antena, éstos consiguen modificar el diagrama de radiación de la propia antena en relación a la situación de ubicación en el vacío. La propia presencia de la tierra en el lugar físico donde se halla la antena condiciona sus características de radiación-recepción. La energía que radia la antena es reflejada en mayor o menor medida en la superficie terrestre, según sea fundamentalmente el grado de conductividad o facilidad de conducción de la corriente eléctrica que posea la tierra. Así, pasamos a tener no sólo la onda radiada directamente por la antena, sino además una onda reflejada por la superficie.

En electromagnetismo se utiliza la teoría de imágenes para obtener una antena a todos los efectos equivalente a la situación de proximidad de la antena real a la tierra. Para ello, se busca la geometría de una distribución de corrientes ideal que estuviese por debajo del plano de la tierra, y que fuese tal que, suponiendo que éste fuese un plano conductor perfecto, se obtuvieran las condiciones de contorno reales que existen sobre el mismo, en términos de valores de los campos eléctrico y magnético. Garantizando esto se estaría en una situación de equivalencia a todos los efectos en la propagación y magnitudes de la onda de espacio (formada por la onda directa y la onda reflejada), en la región en la que ésta puede ser recibida por un receptor, que es el espacio por encima de la superficie terrestre. Es decir, se puede sustituir un plano conductor perfecto por unas corrientes equivalentes. Este hecho se aprovecha en las antenas monopolo sobre masa, del cual las antenas del sistema Elektra-Sonne eran un caso particular. Este tipo de antenas se usan fundamentalmente a bajas frecuencias, dado que sería muy difícil construir un dipolo operando a la frecuencia de portadora, dado el gran tamaño necesario. Las antenas monopolo sobre masa son antenas lineales situadas en posición vertical sobre la tierra, conectadas a uno de los terminales de la línea de transmisión que trae la onda de corriente desde el transmisor, estando el otro terminal de la línea conectado a tierra.

El equivalente del monopolo y su imagen es una antena dipolo, de tal manera que en el espacio sobre la tierra los campos reales serán los de un dipolo de longitud igual a la doble del monopolo. De esta manera, tanto la distribución de corriente como el diagrama de radiación serán los mismos que los del dipolo. Como sólo se radia en la mitad del espacio, el monopolo radiará la mitad de la potencia radiada por el dipolo equivalente y por tanto la resistencia de radiación será también la mitad de la resistencia de radiación del dipolo equivalente, siendo además la directividad doble de la dicho dipolo.

Todo lo anterior sería válido si considerásemos una tierra perfecta, es decir, de conductividad infinita. En la práctica la conductividad es finita, y ello acarrea la presencia de pérdidas de energía, que causan una menor eficiencia de la antena y una elevación del lóbulo –en el plano vertical- en su diagrama de radiación. En los mástiles de radiodifusión de Onda Media, con el objeto de contrarrestar las pérdidas por la conductividad finita de la tierra, se aumenta ésta enterrando platinas metálicas conductoras (tiras conductoras) conectadas entre sí, en la base de la antena y sus proximidades, y también humedeciendo el terreno para que aumente su conductividad. Estas medidas fueron puestas en práctica durante la operatividad del sistema Elektra-Sonne.

 

 

Por otra parte, es un hecho que -para bajas frecuencias- es difícil el poder construir antenas grandes. Además de la dificultad de la construcción de un mástil radiante de gran tamaño, surge el problema de que al disminuir la frecuencia la resistencia de radiación disminuye de manera rápida, y la reactancia de entrada aumenta también con rapidez, presentando valores capacitivos. Esto ya fue descrito en la sección 11.2, cuando se habló del dipolo elemental. Esta reactancia capacitiva vista hacia la derecha de la salida de línea de transmisión sería nociva a efectos operativos, pues representaría la presencia de potencia reactiva en la antena y en la línea, que es potencia que no sólo puede provocar sobrecargas por ser la antena y la línea, en estas circunstancias, una interfase de transferencia y de almacenamiento de energía, sino que además disminuye la magnitud de la energía transferida. Es una situación no deseable, pues en vez de consumirse toda la energía que se entrega a la antena, parte de ella se almacena y no se consigue la optimización de la energía radiada, que lógicamente habrá de ser máxima. Para corregir esta situación, ha de emplearse una bobina, con el objeto de “corregir el factor de potencia”. Esta bobina cancelará el efecto capacitivo de la impedancia de entrada de la antena, y permitirá que toda la energía que se entrega al monopolo –salvo la que se pierde por efecto Joule a causa de su componente resistiva- sea radiada, consiguiéndose que el conjunto de la antena y la bobina logren un comportamiento resonante o de máxima transferencia de energía. Se dice entonces que la antena está en resonancia o que está sintonizada. A escasos metros de los mástiles radiantes de la estación Consol existían unas cabinas donde se hallaban las bobinas variométricas, que habían de ser ajustadas para lograr poner en resonancia las antenas, eliminándose así la potencia reactiva.

Además de esto, como ya se mencionó en anteriores apartados y se puede observar en las fotografías anteriores en este análisis del sistema Elektra-Sonne, los mástiles radiantes Consol estaban terminados en unas caperuzas capacitivas. El hecho de la utilización de estas terminaciones acumuladoras de carga se puede razonar teniendo en cuenta que su presencia fuerza a que la distribución de corriente en la antena no se anule en el extremo y pueda ser vista desde la entrada como la distribución de una antena más larga. Si a partir de la finalización de la línea de transmisión no se hubiese abierto ésta como antena, tendríamos una línea de transmisión terminada en un condensador, el cual puede ser sustituido a todos los efectos por otro tramo de línea de transmisión con la longitud necesaria para presentar la misma impedancia de entrada que el condensador. Se razona entonces que el condensador –o en este caso su equivalente obtenido mediante la caperuza y la tierra, que son sus dos placas- tiene como efecto el de alargar la antena, obteniéndose en el tramo de antena que va desde la base hasta el capuchón capacitivo la distribución de corriente de la antena alargada, pero sólo en ese tramo, que es el que realmente existe, y que será por lo tanto prácticamente uniforme arrojando en el cálculo unos valores de campos electromagnéticos radiados mayores por calcularse los mismos en función del potencial vector, según se vio en la sección 11.1, con la presencia de una densidad de corriente mayor en la antena en relación a la situación del no uso del capuchón capacitivo, al pasarse de una distribución de forma casi triangular a una distribución prácticamente uniforme (constante), dando lugar así a una integral de potencial vector de valor mayor.

Por otra parte, dado que las dos antenas extremas estaban ubicadas lejos del transmisor, era preciso llevar la onda mediante sendas líneas de transmisión desde el mismo a ambas antenas –también era necesaria una línea más corta para hacer lo propio con la antena central-, y para ello era precisa una adaptación de impedancias tanto a la salida del transmisor como a la llegada a las proximidades de las antenas, para conseguir máxima transferencia de energía con reflexiones de onda nulas en los cambios de medio (interfases transmisor-línea y línea-antena). Esto se lograba mediante los oportunos transformadores.

 

 

Como se puede observar en las imágenes, que han sido extraidas del libro “Radio Navigation Radar and Position Fixing Systems for use in Marine Navigation”, volumen II, publicado por el Ministerio de Transporte Británico en mayo de 1946, redactado en el “International Meeting on Radio Aids to Marine Navigation”, y en el que se realiza un estudio –entre otras cosas- del sistema Consol con vistas a la instalación en Bush Mills (Irlanda) de la que sería la estación Consol británica, operativa después de la Segunda Guerra Mundial; las líneas de transmisión tenían una impedancia característica de 600 Ohmmios, entre la estación transmisora y las antenas extremas había una distancia de aproximadamente 3 longitudes de onda, en las proximidades de los mástiles radiantes existían unas “Aerial Tunning Unit”, que son los lugares donde se realizaba la sintonía de cada antena, mediante las bobinas variométricas; existían además unas “Balance/Unbalanced Matching Unit”, donde se adaptaban las impedancias, operando además como balun, para conseguir distribución equilibrada o balanceada entre la corriente de ambas ramas del dipolo equivalente; y además, existía un “Monitor Hut”, o punto de monitorización, ubicado en la perpendicular de la línea de antenas a una distancia lo suficientemente grande como para estar situado en la zona de campo lejano –que en la práctica eran unos kilómetros-, cuya misión era la de garantizar que los desfases producidos sobre la onda por haber viajado largo trecho a través de las líneas de transmisión desde el transmisor central, así como los eventuales desfases espurios que se produjesen en la máquina Elektra por su posible y eventual situación de incorrecto ajuste, ambos considerados cooperativamente, no alterasen la operación ideal de funcionamiento del período de transmisión de señal Consol o señal de orientación, según el cual entre las señales aplicadas a las antenas extremas debe mediar un desfase exacto resultado de la alternancia de 0 grados y de 180 grados, más un desfase creciente y lineal en forma de diente de sierra. Esto es, mediante el punto de monitorización, donde se hallaba un receptor de radio, y que estaba comunicado por línea con la estación de control, se lograba saber cuándo pasaba el máximo (o el mínimo, según conveniencia) del lóbulo de radiación perpendicular sobre la línea recta que unía dicho punto de monitorización y la antena central, y que era perpendicular a la línea de antenas, y así se podía avisar a la estación de control, para que allí ajustasen en consecuencia la máquina Elektra (la cual era la responsable de conseguir los dos regímenes de desfase superpuestos P y D de los que se ha hablado en la sección 9, entre las corrientes aplicadas a las dos antenas extremas) para lograr un correcto funcionamiento y la corrección de los factores de fase producidos por el viaje de la onda hasta las antenas y por un ajuste inadecuado de la propia máquina Elektra, consiguiéndose el deseado movimiento de los lóbulos de barrido a ambos lados, que establecen el movimiento de los radiales de equiseñal, y en perfecta sincronía con el comienzo del ciclo de señal de orientación, de tal forma que en alta mar se produjese la observancia del paso del rayo de equiseñal justo en el momento que le corresponde según lo descrito en las cartas de navegación que incluyen los radiales, y según lo prescrito por el diseño, y no antes ni después, cosa que daría lugar a lecturas de posición muy erradas.

En la imagen a continuación se representa el corte horizontal del diagrama de radiación de una estación Consolan, sistema similar a Consol salvo en el número de antenas empleadas (dos para este caso), y en el número de lóbulos del corte horizontal del diagrama de radiación de dicho sistema. El sistema Consolan fue un desarrollo creado posteriormente al sistema Consol, es decir después de la confrontación bélica, y estaba basado en el sistema Elektra-Sonne. La imagen ha sido extraida del libro Funk-systeme für Ortung und Navigation, escrito por Ernst Kramar, y publicado en el año 1973. En cuanto al corte vertical del diagrama de radiación, y para ya concluir con este apartado, faltaría decir únicamente que por ser monopolos sobre tierra las antenas, sería similar al de una antena dipolo.

 

Diagramas1p

 

Anuncios